Extraordinarily high evolutionary rate of pseudogenes: evidence for the presence of selective pressure against changes between synonymous codons.
نویسندگان
چکیده
Comparisons of nucleotide sequences of several pseudogenes described to date, including alpha- and beta-globin and immunoglobulin kappa-type variable domain pseudogenes, with those of functional counterparts revealed that pseudogenes accumulate mutations at an extremely high rate uniformly over their entirety. It is remarkable that the evolutionary rate exceeds the rate of changes between synonymous codons, the highest known rate, in functional genes. Because no pseudogenes appear to function, this result strongly supports the neutral theory. In addition this result apparently indicates the presence of selective pressure against changes between synonymous codons in functional genes. Close examinations of codon utilization patterns in pseudogenes and functional genes revealed a significant correlation between the rate of changes at synonymous codon sites and the strength of bias in code word usage. This implies that even synonymous codon changes are not completely free from selective pressure but are constrained in part, although presumably weakly, depending on the degree of bias in code word usage. We also reexamined alignment between mouse beta h3 (pseudogene) and beta maj sequences and found a unique structure of the beta h3 that is homologous in sequence to the beta maj gene overall but contains a long deletion (about 150 base pairs) in the middle of the gene.
منابع مشابه
Mutational Pressure Drives Evolution of Synonymous Codon Usage in Genetically Distinct Oenothera plastomes
Background: Most of the amino acids are encoded by more than one codon, termed as synonymous codons. Synonymous codon usage is not random as it is unique to species. In each amino acid family, some synonymous codons are preferred and this is referred to as synonymous codon usage bias (SCUB). Trends associated with evolution of SCUB and factors influencing its diversification in plastomes of gen...
متن کاملRates of Synonymous Substitution and Base Composition f Nuclear Genes in Drosophila Etsuko
We compared the rates of synonymous (silent) substitution among various genes in a number of species of Drosophila. First, we found that even for a particular gene, the rate of synonymous substitution varied considerably with Drosophila lineages. Second, we showed a large variation in synonymous substitution rates among nuclear genes in Drosophila. These rates of synonymous substitution were co...
متن کاملComparison of the genomes of human and mouse lays the foundation of genome zoology.
The extensive similarities between the genomes of human and model organisms are the foundation of much of modern biology, with model organism experimentation permitting valuable insights into biological function and the aetiology of human disease. In contrast, differences among genomes have received less attention. Yet these can be expected to govern the physiological and morphological distinct...
متن کاملReduced synonymous substitution rate at the start of enterobacterial genes.
Synonymous codon usage is less biased at the start of Escherichia coli genes than elsewhere. The rate of synonymous substitution between E.coli and Salmonella typhimurium is substantially reduced near the start of the gene, which suggests the presence of an additional selection pressure which competes with the selection for codons which are most rapidly translated. Possible competing sources of...
متن کاملEvolutionary dynamics of human retroviruses investigated through full-genome scanning.
To test hypotheses on the differences in retroviral genetic diversity, we compared the evolutionary dynamics of the human immunodeficiency virus type 1 (HIV-1) group M and the primate T-cell lymphotropic virus (PTLV) using a full-genome analysis. Evolutionary rates and nonsynonymous/synonymous substitution rate ratios were estimated across the genome using a maximum likelihood sliding window ap...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 78 9 شماره
صفحات -
تاریخ انتشار 1981